A Time - Spectral Hybridizable Discontinuous Galerkin Method for Periodic Flow Problems

نویسنده

  • Hemant Kumar Chaurasia
چکیده

Numerical simulations of time-periodic flows are an essential design tool for a wide range of engineered systems, including jet engines, wind turbines and flapping wings. Conventional solvers for time-periodic flows are limited in accuracy and efficiency by the low-order Finite Volume and time-marching methods they typically employ. These methods introduce significant numerical dissipation in the simulated flow, and can require hundreds of timesteps to describe a periodic flow with only a few harmonic modes. However, recent developments in high-order methods and Fourier-based time discretizations present an opportunity to greatly improve computational performance. This thesis presents a novel Time-Spectral Hybridizable Discontinuous Galerkin (HDG) method for periodic flow problems, together with applications to flow through cascades and rotor/stator assemblies in aeronautical turbomachinery. The present work combines a Fourier-based Time-Spectral discretization in time with an HDG discretization in space, realizing the dual benefits of spectral accuracy in time and high-order accuracy in space. Low numerical dissipation and favorable stability properties are inherited from the high-order HDG method, together with a reduced number of globally coupled degrees of freedom compared to other DG methods. HDG provides a natural framework for treating boundary conditions, which is exploited in the development of a new high-order sliding mesh interface coupling technique for multiple-row turbomachinery problems. A regularization of the Spalart-Allmaras turbulence model is also employed to ensure numerical stability of unsteady flow solutions obtained with high-order methods. Turning to the temporal discretization, the Time-Spectral method enables direct solution of a periodic flow state, bypasses initial transient behavior, and can often deliver substantial savings in computational cost compared to implicit time-marching. An important driver of computational efficiency is the ability to select and resolve only the most important frequencies of a periodic problem, such as the blade-passing frequencies in turbomachinery flows. To this end, the present work introduces an

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridizable discontinuous Galerkin (HDG) method for Oseen flow

3 The hybridizable discontinuous Galerkin (HDG) formulation 3 3.1 HDG local problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 HDG global problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Local post-process of the velocity field . . . . . . . . . . . . . . . . . . . . 5 3.4 Assembly of the matrices . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media

We present a new method for simulating incompressible immiscible two-phase flow in porous media. The semi-implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin (HDG) method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of fre...

متن کامل

An Analysis of the Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems

The embedded discontinuous Galerkin methods are obtained from hybridizable discontinuous Galerkin methods by a simple change of the space of the hybrid unknown. In this paper, we consider embedded methods for second-order elliptic problems obtained from hybridizable discontinuous methods by changing the space of the hybrid unknown from discontinuous to continuous functions. This change results ...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

A hybridizable discontinuous Galerkin method for Stokes flow

Article history: Received 21 February 2009 Received in revised form 28 July 2009 Accepted 19 October 2009 Available online 1 November 2009

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014